Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 246: 125660, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37399877

RESUMO

Currently, microbial bioactive substances (postbiotics) are considered a promising tool for achieving customer demand for natural preservatives. This study aimed to investigate the effectiveness of an edible coating developed by Malva sylvestris seed polysaccharide mucilage (MSM) and postbiotics from Saccharomyces cerevisiae var. boulardii ATCC MYA-796 (PSB) for the preservation of lamb meat. PSB were synthesized, and a gas chromatograph connected to a mass spectrometer and a Fourier transform infrared spectrometer were used to determine their chemical components and main functional groups, respectively. The Folin-Ciocalteu and aluminium chloride techniques were utilized to assess the total flavonoid and phenolic levels of PSB. Following that, PSB has been incorporated into the coating mixture, which contains MSM, and its potential radical scavenging and antibacterial activities on lamb meat samples were determined after 10 days of 4 °C storage. PSB contains 2-Methyldecane, 2-Methylpiperidine, phenol, 2,4-bis (1,1-dimethyl ethyl), 5,10-Diethoxy-2,3,7,8- tetrahydro-1H,6H-dipyrrolo[1,2-a:1',2'-d] pyrazine, and Ergotaman-3',6',18-trione, 12'-hydroxy-2'-methyl-5'-(phenylmethyl)-, (5'alpha) as well as various organic acids with significant radical scavenging activity (84.60 ± 0.62 %) and antibacterial action toward Salmonella typhi, Escherichia coli, Pseudomonas aeruginosa, Bacillus cereus, Staphylococcus aureus, and Listeria innocua as foodborne pathogens. The edible PSB-MSM coating effectively reduced microbial growth and increased meat shelf life (> 10 days). When PSB solutions were added to the edible coating, the moisture content, pH value, and hardness of the samples were also more successfully maintained (P < 0.05). The PSB-MSM coating inhibited lipid oxidation in meat samples considerably and diminished the formation of primary as well as secondary oxidation intermediates (P < 0.05). Additionally, when MSM + 10 % PSB edible coating was utilized, the sensory properties of the samples were maintained more well during preservation. As a significance, the use of edible coatings based on PSB and MSM is efficient in decreasing microbiological and chemical degradation in lamb meat during preservation.


Assuntos
Filmes Comestíveis , Malva , Carne Vermelha , Saccharomyces boulardii , Animais , Ovinos , Conservação de Alimentos/métodos , Saccharomyces cerevisiae , Carne Vermelha/microbiologia , Antibacterianos/farmacologia , Antibacterianos/análise , Sementes/química , Polissacarídeos/farmacologia , Polissacarídeos/análise
2.
Artigo em Inglês | MEDLINE | ID: mdl-37402072

RESUMO

A new biotherapeutic strategy involves the use of microbial bioactive substances (postbiotics) that exhibit optimum compatibility and intimate contact with the immune system of the host. This study was aimed at investigating the potential biological activities of postbiotics derived from Saccharomyces cerevisiae (PTCC 5269) (PSC) under in vitro circumstances. Based on the outcomes, the synthesized PSC possessing a high level of phenolic (102.46 ± 0.25 mg GAE/g) and flavonoid (19.87 ± 75.32 mg QE/g) content demonstrated significant radical scavenging activity (87.34 ± 0.56%); antibacterial action towards Listeria monocytogenes, Streptococcus mutans, Salmonella typhi, and Escherichia coli (in order of effectiveness) in both in vitro and food models (whole milk and ground meat); probiotics' growth-promoting activity in the fermentation medium; α-glucosidase enzyme-inhibiting and cholesterol-lowering properties in a concentration- and pH-dependent manner; reduction in the cell viability (with the significant IC50 values of 34.27 and 23.58 µg/mL after 24 and 48 h, respectively); suppressed the initial (G0/G1) phase of the cell's division; induced apoptosis; and increased the expression of PTEN gene, while the IkB, RelA, and Bcl-XL genes indicated diminished expression in treated SW480 cancer cells. These multiple health-promoting functions of PSC can be extended to medical, biomedical, and food scopes, as novel biotherapeutic approaches, in order to design efficient and optimized functional food formulations or/and supplementary medications to use as adjuvant agents for preventing or/and treating chronic/acute disorders.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37432597

RESUMO

Due to its physiological benefits from in vitro and in vivo points of view, Akkermansia muciniphila, a common colonizer in the human gut mucous layer, has consistently been identified as an option for the next-generation probiotic. A. muciniphila is a significant bacterium that promotes host physiology. However, it also has a great deal of potential to become a probiotic due to its physiological advantages in a variety of therapeutic circumstances. Therefore, it can be established that the abundance of A. muciniphila in the gut environment, which is controlled by many genetic and dietary variables, is related to the biological behaviors of the intestinal microbiota and gut dysbiosis/eubiosis circumstances. Before A. muciniphila is widely utilized as a next-generation probiotic, regulatory obstacles, the necessity for significant clinical trials, and the sustainability of manufacturing must be eliminated. In this review, the outcomes of recent experimental and clinical reports are comprehensively reviewed, and common colonization patterns, main factors involved in the colonization of A. muciniphila in the gut milieu, their functional mechanisms in establishing homeostasis in the metabolic and energy pathways, the promising delivery role of microencapsulation, potential genetic engineering strategies, and eventually safety issues of A. muciniphila have been discussed.

4.
Crit Rev Food Sci Nutr ; 63(26): 8375-8402, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35348016

RESUMO

Food is the essential need of human life and has nutrients that support growth and health. Gastrointestinal tract microbiota involves valuable microorganisms that develop therapeutic effects and are characterized as probiotics. The investigations on appropriate probiotic strains have led to the characterization of specific metabolic byproducts of probiotics named postbiotics. The probiotics must maintain their survival against inappropriate lethal conditions of the processing, storage, distribution, preparation, and digestion system so that they can exhibit their most health effects. Conversely, probiotic metabolites (postbiotics) have successfully overcome these unfavorable conditions and may be an appropriate alternative to probiotics. Due to their specific chemical structure, safe profile, long shelf-life, and the fact that they contain various signaling molecules, postbiotics may have anti-inflammatory, immunomodulatory, antihypertensive properties, inhibiting abnormal cell proliferation and antioxidative activities. Consequently, present scientific literature approves that postbiotics can mimic the fundamental and clinical role of probiotics, and due to their unique characteristics, they can be applied in an oral delivery system (pharmaceutical/functional foods), as a preharvest food safety hurdle, to promote the shelf-life of food products and develop novel functional foods or/and for developing health benefits, and therapeutic aims. This review addresses the latest postbiotic applications with regard to pharmaceutical formulations and commercial food-based products. Potential postbiotic applications in the promotion of host health status, prevention of disease, and complementary treatment are also reviewed.

5.
BMC Res Notes ; 15(1): 321, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36221149

RESUMO

OBJECTIVES: This study aimed to evaluate the association of the intimin (eae) and pagC genes with biofilm formation and multidrug resistance (MDR) phenotype in Escherichia coli and Salmonella enterica collected from calves with diarrhea. RESULTS: Fecal samples (n: 150) were collected from calves with diarrhea. Of 150 fecal samples, 122 (81.3%) were culture positive and 115/122 (94.2%) were Gram-negative bacteria. Among them, E. coli (n = 64/115, 55.6%) was the most common isolate followed by S. enterica (n = 41/115, 35.6%). Also, 10 (8.6%) isolates were other Enterobacteriaceae bacteria including Klebsiella and Proteus species. Eighty-nine isolates (77.4%) from calf diarrhea, including 52 (81.3%) E. coli and 37 (90.2%) S. enterica were MDR. The eae and pagC genes were detected in 33 (51.5%) E. coli and 28 (68.3%) S. enterica isolates, respectively. There was a strong association between these genes and biofilm formation and MDR phenotype (P-value = 0.000). All E. coli isolates carrying the eae gene were biofilm producers and MDR. Also, all pagC-positive S. enterica isolates were MDR and 25 (89.3%) isolates of them produced biofilm.


Assuntos
Infecções por Escherichia coli , Salmonella enterica , Animais , Antibacterianos/farmacologia , Biofilmes , Bovinos , Diarreia/microbiologia , Diarreia/veterinária , Resistência a Múltiplos Medicamentos/genética , Escherichia coli , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Proteínas de Membrana , Virulência
6.
Infez Med ; 30(2): 180-193, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693065

RESUMO

The priority of the Sustainable Development Goals for 2022 is to reduce all causes related to mortality. In this regard, microbial bioactive compounds with characteristics such as optimal compatibility and close interaction with the host immune system are considered a novel therapeutic approach. The fermentation process is one of the most well-known pathways involved in the natural synthesis of a diverse range of postbiotics. However, some postbiotics are a type of probiotic response behavior to environmental stimuli that usually play well-known biological roles. Also, postbiotics with unique structure and function are key mediators between intestinal microbiota and host cellular processes/metabolic pathways that play a significant role in maintaining homeostasis. By further understanding the nature of parent microbial cells, factors affecting their metabolic pathways, and the development of compatible extraction and identification methods, it is possible to achieve certain formulations of postbiotics with special efficiencies, which in turn will significantly improve the performance of health systems (especially in developing countries) toward a wide range of acute/chronic diseases. The present review aims to describe the fundamental role of postbiotics as the key mediators of the microbiota-host interactions. Besides, it presents the available current evidence regarding the interaction between postbiotics and host cells through potential cell receptors, stimulation/improvement of immune system function, and the enhancement of the composition and function of the human microbiome.

7.
J Appl Microbiol ; 133(2): 488-502, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35429123

RESUMO

AIMS: Firstly, Cinnamomum zeylani essential oil (CZEO) was isolated and characterized. Secondly, CZEO was used in Malva sylvestris mucilage (MSM) coating and its antioxidant and antimicrobial effects on lamb meat slices were evaluated in 10 days at 4°C. METHODS AND RESULTS: The main chemical compounds and functional groups of the CZEO were identified and quantified by a gas chromatograph coupled to a mass spectrometer and by an Fourier transform infrared spectrometer respectively. The total phenol and flavonoid contents of CZEO were determined by the Folin-Ciocalteu reagent-based and aluminium chloride methods respectively. Various microbiological, physicochemical analyses and sensory evaluations were also utilized regarding the coated lamb meat slices. CZEO contains benzyl benzoate (40.93%), caryophyllene oxide (26.07%) and (E)-cinnamaldehyde (13.01%), with strong radical scavenging activity and antibacterial effect against investigated pathogenic microorganisms. The CZEO-loaded MSM edible coating greatly postponed the growth of microorganisms and extended the product life (>10 days). The pH value, moisture content and hardness of the samples were also preserved more efficiently when high concentrations of the essential oil were incorporated into the edible coating (p < 0.05). The CZEO-rich MSM coating was also able to possess considerable activity against lipid oxidation in lamb meat samples, and significantly decreased the production of primary and secondary oxidation products (p < 0.05). Moreover, sensory parameters of the samples were preserved more efficiently during cold storage when the CZEO-enriched edible coating, particularly MSM + 2% CZEO was used. CONCLUSIONS: The use of edible coating based on MSM and CZEO is therefore effective in reducing microbial growth and chemical reactions in lamb meat during the storage period. SIGNIFICANCE AND IMPACT OF THE STUDY: The importance of the results of this study is in order to increase the use of natural preservatives, maintain food safety and of course the health of the people in the community.


Assuntos
Filmes Comestíveis , Malva , Óleos Voláteis , Carne Vermelha , Animais , Cinnamomum zeylanicum , Conservação de Alimentos/métodos , Humanos , Óleos Voláteis/química , Carne Vermelha/microbiologia , Sementes/química , Ovinos
8.
Infez Med ; 30(1): 59-72, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350257

RESUMO

Humanity is currently facing a life-threatening challenge from the infectious and epidemic disease SARS-CoV-2. To date, the various modes of transmission of the virus have not been fully elucidated. In this regard, there is a possibility of transmission of the virus through food products. The COVID-19 pandemic disease, like those associated with SARS and MERS, is transmitted mainly through the respiratory tract and airborne aerosol particles, but the presence of fragments of the genetic virus (RNA) in the feces of numerous patients proposes that their fecal-oral pathway may be expanded. In addition, people with gastrointestinal disorders such as atrophic gastritis and metaplasia may be susceptible to COVID-19 infection. Accordingly, food may act as a potential carrier of COVID-19 due to environmental or cross-contamination. According to the available evidence, the spread and possibility of transmission of COVID-19 contamination from humans to food products are possible. Beyond that, there is some evidence that some food sources of animal origin, such as pigs and rabbits, can be contaminated by COVID-19. Therefore, the transmission of the virus through some meat products may be conceivable. Due to the rapid release rate of COVID-19 and its stability in various milieus, especially food manufacturing circumstances, it may enter the matrix during different stages of traditional or industrial food processing. Therefore, preventive measures are recommended to be utilized in the food manufacturing sector. The present study explored the risk of different food matrices, including dairy products, bread, meat and meat products, vegetables, fruits, and processed foods, as potential carriers for the transmission of COVID-19.

9.
Crit Rev Food Sci Nutr ; 62(22): 5983-6004, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33715539

RESUMO

According to outcomes from clinical studies, an intricate relationship occurs between the beneficial microbiota, gut homeostasis, and the host's health status. Numerous studies have confirmed the health-promoting effects of probiotics, particularly in gastrointestinal diseases. On the other hand, the safety issues regarding the consumption of some probiotics are still a matter of debate, thus to overcome the problems related to the application of live probiotic cells in terms of clinical, technological, and economic aspects, microbial-derived biomolecules (postbiotics) were introducing as a potential alternative agent. Presently scientific literature confirms that the postbiotic components can be used as promising tools for both prevention and treatment strategies in gastrointestinal disorders with less undesirable side-effects, particularly in infants and children. Future head-to-head trials are required to distinguish appropriate strains of parent cells, optimal dosages of postbiotics, and assessment of the cost-effectiveness of postbiotics compared to alternative drugs. This review provides an overview of the concept and safety issues regarding postbiotics, with emphasis on their biological role in the treatment of some important gastrointestinal disorders.


Assuntos
Gastroenteropatias , Microbioma Gastrointestinal , Microbiota , Probióticos , Criança , Gastroenteropatias/prevenção & controle , Humanos , Lactente , Probióticos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...